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Abstract--Velocity distribution and mass transport for plug and laminar flow are determined for liquid 
flow in sector and annular sector tubes. The wail concentration and the initial concentration of the inlet 
to the tube are considered constant. The concentration profiles are determined in various locations of the 
cross-section and along the length of the tube. In addition lines of equal liquid velocity and equal 

concentration are presented for the plug and laminar flow case. 

1. I N T R O D U C T I O N  

THE MASS transport problem has been investigated in 
channels and tubes for plug and laminar flow for 
many decades [1-6]. In most of  these cases the partial 
differential equation obtained exhibited only two vari- 
ables, while the velocity distribution could be pre- 
sented as a simple one-variable function. In a sector 
or annular sector tube, however, the angular coor- 
dinate ~b appears, such that the diffusion equation 
exhibits the three coordinates r, 0, z, while the liquid 
velocity inside the tube may only be described by an 
infinite series, where the terms exhibit functions of  the 
two coordinates r and qS. This yields a mass transport 
equation which does not  admit a completely analytical 
solution. For  this reason the plug flow solution is used 
as an expansion function for the laminar flow case. 
With the Galerkin method applied to the mass trans- 
port problem with laminar flow, the Galerkin con- 
dition yields an infinite number of  algebraic equations, 
of  which the vanishing of  the truncated coefficient 
determinant renders the approximation of  the lower 
eigenvalues, Since with increasing axial coordinate the 
exponential function, describing the mass transport 
behaviour along the tube length, rapidly approaches 
vanishing magnitude, the convergence of  the result 
presenting the concentration is very good. In the 
course of  the numerical evaluation it was, however, 
found, that the numerical procedure, based on the 
analytical solution (i.e. the treatment of  the coefficient 
determinants and the integrals of  Bessel functions), 
needs considerably more computer  time than the orig- 
inal numerical solution of  the mass transport  
problem. This numerical solution for both cases, i.e. 
plug and laminar flow, was in addition used to prove 
the accuracy of  the analytical solution. They produce 
identical results. 

2. BASIC E Q U A T I O N S  

For the determination of  the local concentrat ion 
one has to solve the partial differential equation for 

mass transport. This may be performed f6r the case 
of  a plug flow and that of  laminar flow in a tube of  
annular sector cross-section. 

2.1. The f l o w  prob lem 
Assuming laminar flow along the z-axis for which 

only the axial flow component  w # 0, one has to solve 
for a pipe with annular sector cross-section of  angle 
27zc~ (Fig. 1) with radial and angular flow velocity 
u = v = 0 and continuity equation ~w/g;z = 0 for 
stationary flow the Navier-Stokes  equation 

1 8p ()2w 1 8w 1 82w 
~ =  ~ + r  + (1) r I c'z ?~r ~ 8r r 2 9(02 

with the no-slip boundary condition at 

w = 0 for ~b = 0, 27t~ and r = a, b. (2) 

Expanding w(r,~b) into a Fourier  sine series satisfying 
the boundary conditions at ~b = 0 and 2=~ yields 

w(r,~b) = ~ Wm(r) sin 2~ " (3) 
r n = l  

With the expansion of  the pressure gradient 

q 0z P,,sin 2 q~ (4) 
m ~ l  

with 

[ 0 for m even 

one obtains the differential equation 

d2Wm 1 dW,, m 2 [ 0  for m even 

dr 2 + - -  Wm = /  4 @ r dr 4cdr 2 r/rim 8z for m odd 

(6) 

for the determination of  the function W,,(r).  The solu- 
tion of  this differential equation satisfying the remain- 
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NOMENCLATURE 

a outer radius of  annular sector tube p 
b inner radius of  annular sector tube r, 4~, z 
c concentrat ion 12 
q initial concentrat ion at inlet z = 0 w 
Cw wall concentrat ion at r = a, b ; w0 

4) = 0, 2~c~ 
D diffusion coefficient 
Jm/2~, Ym/2, Bessel functions of  first and 

second kind of  order m/2e 
k b/a 

liquid pressure 
cylindrical polar coordinates 
volumetric flow 
axial liquid velocity 
plug flow velocity. 

Greek symbols 
3,,, eigenvalues 
q dynamic viscosity 
2~e sector angle of  tube cross-section. 

ing boundary conditions Him = 0 at r = a, b is given 
by (W2,, = 0) 

W2,,,-,(r)=(4a2(~z)/q~z(2m--1) 

(2rn--1) z r 2 . . ,  

t/r\(2m I)/2, 
( l - - k  (2m- I)/~)]~a ) _ [(k(2m-1)/2, 

/a\~2m- ,)/2,} 
(kZ-k(2"-')/z~)/(1-k'2"-')/')]~,r) . (7) 

0 b a 

Various Cross-Sections of Tube 

I 

@ @ 

FIG. 1. Geometry of cross-section of tube and coordinate 
system. 

One has to observe, for this solution, that e ¢ 1/4, 3/4 
for m = 1 and 2, respectively. For  c~ = 1/4 one obtains 
the solution 

 4l.k (ay; 
O--k~) \ ; /  ) (8) 

while for ~ = 3/4 the function W3(r) in equation (7) 
has to be substituted by 

(l  _ k 4 )  . (9) 

In the case of  a sector cross-section, i.e. k = 0 (b = O) 
the solutions are given by 

W 2 m _  ~ ( r )  = 

x - for ~ :~ 1/4, 3/4 (7') 

W ' ( r ) - a2 (~Pz) ( ; )21n( ; ) t /~z  fo rce=  1/4 (8') 

and 

(q ln(q W3(r) - 3~q \ a /  \ a /  for e = 3/4. (9') 

The velocity distribution for laminar flow in a tube of  
sector cross-section is therefore (Fig. 2) 
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FIG. 2. Flow profile of  laminar viscous flow and lines of equal velocity. 
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4a2 ~zz 
w~(r, dp) - -  - -  

~r~y] m= I 

(2m-- I) , 1 
sin [ - - ~ -  q~J 

(2m-l)[ 4-(2m-IYl\ 2~ )A 

, ,o)  

where for a circular quarter  cross-section ~ = 1/4 the 
term m = 1 in the series has to be substi tuted by equa- 
tion (8') and where for a circular three-quarter  cross- 
section a = 3/4 the term m = 2 must  be replaced by 
equation (9').  The velocity distr ibution for an annular 
sector cross-section is (Fig. 2) 

4aZ(~zz ) s inF  ( 2 m -  1) 
L 2~ J 

Wa(E~ ~) 
nt/ " = '  ( 2 m - - / ' L  1 ) [ 4  -- ( 2 m - - 1 y 1  

x - (1 _ k(2,,_ 1)/= ) 

_ k(2m- 1)/2=(k2 _ _ k ( 2 m -  1)/2=) 

For  e = 1/4 the term m = 1 has to be replaced by 
equation (8) and for c~ = 3/4 the term m = 2 has to be 
substituted by equation (9). The flow volume per time 
unit is given by 

f?; ~" = w(r, q~)r dr d4~ 

and yields (e ¢ 1/4, 3/4) the expression 

1 
_ ~p oo 128 16a4~ ( ~ z ) ~ ,  E~ - ( ( 2 m -  1)/2~) q- 2 ]  

rcq ( 2 m - - 1 ) 2 [  4 - ( 2 m - l Y l \  2~ , /_ l  

(11) 

for the sector cross-section, and 

ap _l. 
K ~ - n .  [4 \ /(2m--Iylj 

f 
(1 - k  4) 

× 4 

(1 --  k (2m- 0/2=+ 2 ) 2 

2m-- 1 + 2 )  (1 - k  ~"- ')/=) \ ~ U - ~  

(11) the term m = 1 by -a4(Op/gz)/16tln and m = 2 
by -a4(ap/Oz)/48rtrl, respectively. Fo r  the annular  
pipeline with the sector of ~ = 1/4 and 3/4 the term 
m = 1 has to be replaced in equation (12) by 

a4(¢3P/~Z) f 16k4(lnk)2 t 
16r/n 1 - k  4 1 - k  4 

and m = 2 by 

a4(OP/OZ) {1 --k" 16k6(lnk)2]~ 

48r/n ~ J 

respectively. 

2.2. The mass transport problem 
Since the medium is flowing the local concentrat ion 

change must be determined by the effects of con- 
vection and molecular  diffusion. The mass t ransport  
equation therefore reads 

FOZc 1 8c 1 OZc O2c 1 c3c 
D ~/~r2 + r Orr + ~5 ~ + ~z2_] -- w(r, qS) ~z z = 0. 

(13) 

In this equation the diffusion in the axial direction 
(~02c/az2) may be neglected compared to the con- 
vective par t  ( ~  Oc/az). If  the flow in the tube is con- 
sidered a plug flow, i.e. w = w0 = const, the part ial  
differential equation for the mass t ransport  is given 
by 

02c 1 ~c 1 ~2c Wo t3c 
ar ~ + r ~rr + r 2 ~92 D Oz 0 

and has to be solved with the boundary  conditions of 
constant  wall concentrat ion 

c = Cw at the walls r = a, b and q~ = 0, 2n~. 

If  the flow is laminar  one has to introduce instead of 
w0 expression (10), where the velocity distr ibution is 
represented as an infinite series. Fo r  both flow cases 
the local concentrat ion and mean concentration is 
determined if at  the inlet z = 0 the concentrat ion 
C ~ C i ~- const. 

3. M E T H O D  OF SOLUTION 

Two cases of mass t ransport  in a tube of  circular 
annular  sector cross-section will be distinguished, one 
being that  of plug flow w = w0 in the tube and the 
other of  laminar  flow, the solution of  which requires 
the knowledge of  the case with plug flow. 

+ 
k(2m t)/~(k 2 __k,2m- f2~)( 1 ___k2-(2m-,)/2=) 1 

( 1 -  k ( 2 m - - 1 ) / = ) ( 2 2 £  1 2 )  
(12) 

for the annular  sector cross-section. Fo r  the sector 
angles c~ = 1/4 and 3/4 one has to replace in equation 

3.1. Plug flow 
With the dimensionless coordinate y = r/a the 

differential equation to be solved for plug flow yields 

~2c 1 ~c 1 ~2c woa e ~c 
a y 2 + y ~ y y + y 2  ~q~2 D ~ z = 0  (14) 
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which has to be solved with the boundary conditions 
(k = b/a) 

at the walls y = k, 1 and q~ = 0, 2~ra. C = C w 

Substituting 

C --  C w _ C e .~z 
C i - -  C w 

results in the boundary conditions C = 0 at y = k, 1 
and ~b = O. 27t~. the initial condition C = 1 at z = 0 
and 

8~2C 1 i)C 1 82C 
~y2 +;?~, +y~ ~ + ~ c = 0  

where 

~ 2 __ Woa2A 
D 

The solution is given by 

C(y, 4)) = L L A,..{Jm/2~(flm.Y) Y,.,/2~,(fl.,,,) 
m--On-- 1 

-J.,/2~(fl.,.) Ym/2~(fl...Y) } sin (m/2a)(~b) 

where tim. are the roots of 

J,.:2~(kfl) Ym/2~(kfl) = 0 (15) 

and A,.. are integration constants to be determined 
from the initial condition C = 1 at the inlet z = 0. 
They are 

A,..=(fo2=~'~'yCm, z:,(flmny) s in(~dp)dydd?/  

fo2==ilyc2,2~(flm, y) sin2(~c~)dydc~) 

where 

C.,/2~(flm.y) =-- J,.,/2~(fl.,.Y) Y.,/2~(fl,..) 
-- Jm/2~(flmn) Ym/2~(flmnY). 

It is finally 

n ( 2 m - l )  yC~2" ,)..2~(f12m ,~y)dy . (16) 

With the orthogonality condition of  Cm/2~(flm.y), 
given by 

f~ YCm/2:,(flm.y)Cm,,2:,(flmpy) dy 

,~o for~ # p  } 
= b {  c,,,~(fl.,~) ~ ,~ , ..2 - k  C.,,2=(flm.k)} f o r n = p  

(17) 

one obtains 

A2m-ln = yC(2m l)/2a (fl2m i~y) dy/x(2m-1) 

I C ' 2  IR ~ k2C,2 (l:t }) x / (2m- l)/2~\/a2m I n ) -  (2" I) , '2~P2" In k )  • 

The local concentration is therefore given by 

c(r,~b,z)=Cw+(C,-C,) L L A2m In 
m = l . = l  

xC(2m l)/2a(fl2m , .  r )  s i n  ( ( 2 2 ~  1) q) ) 

[ xexp . (18) 
w0a 

For a sectorial cross-section (k = 0) the local con- 
centration is given by the expression 

c(r,d~,z)=Cw+(C~-Cw) L L A2,~ ,,, 
m = l n = l  

×exp I Dfl~,,, ,~(Z~]woa \ a / 3  (19) 

where 

,~ = y&~-,,~(/L~ ,°y) dv// A2~_ 

1)J'~2.. ,,,'2~(fl2.. ,.,)) ~ ( 2 m - -  

and tim. are roots of  

J,./2~(fl) = o. (2~) 
From the above results all special cases may be 
obtained. 

(20) 

3.2. Laminar flow 
The concentration for laminar flow in a tube of 

annular sector cross-section is obtained from the solu- 
tion of  the partial differential equation 

~2C 1 8c 1 02c 4a 4 
~y2 + y ~yy + y2 63~b2 rtDq 

(Sp~ s i n [  ~ 2 ~ - 1  ) ~b ] 

× m=lL \ c q z ] ( 2 m _ l )  [ 4 - -  ( - 2 ~ 1  2 ) 1 

y (1 -- k(2m- 1)/2:~+ 2) 
X 2 __ (1 - k  (2m i),,~) y(2,.- i)/2~ 

k(2m-l)/2•(k2-k(2m-l)"2") }~C 
-- (1 - k  ~2m- ')/=) y (2,.- ,):2~ ~-z= 0 

(22) 
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which in the case of a tube of sector cross-section 
reads 

~2c 1 0c 1 ~2c 
ay2 + y  ay+y2 #~ 2 

sin I ( ~ 2 ~  1~ ~1  
4a4(OP/°Z) ~ - - - - - -  

m=, ( 2 m - l )  4 -  

x {y2__y(2m-,)/2~} ~?Z = 0. (23) 

The solution for the local concentrat ion is given by 
equations (18) and (19), respectively, for which new 
eigenvalues /3*, have to be determined by the fol- 
lowing procedure. The solution of the above treated 
case of plug flow is used. It exhibits the eigenvalues 
tim,,. For  the above differential equation for the con- 
centration with laminar  flow a solution is assumed 
satisfying the same boundary  conditions and having 
the same eigenfunctions as the case of plug flow. Thus 
it is with 

C - - C w  - -  C * e  Az 

C i - -  C w 

~32C* 1 ~?C* 1 ~32C* 4a4A 
E[C* ;y, qS] = a y ~ + y ~ y - y  + y 2  aq~2 F rtr/D 

sin[ Ol 
x ~ ( ~ P z ) [ 4  ( 2 1 - - l y ]  

' = '  ( 2 / - -  l) - \ ~ - - /  j 

× { y 2 _  [(1 - k  ~2/ ,)/2,+ 2)y~2l ,)/2~ +k~2t- ~3/2~ 

x(k2 k(2¢ 1)/2~)y-(2l w 2 ~ ] / ( l _ k ( 2 t  l)/a)}C, = 0  
(24) 

where the solution may be written in the form 

This solution satisfies all boundary  conditions. Intro- 
ducing it into the above differential equation and 
observing equation (24), one obtains by employing 
the orthogonality relation of Cm/2c~( f lmnY)  after aver- 
aging a homogeneous system of algebraic equations 
for the approximate determination of the eigenvalues 
/3*,(A,,,,,), where 

/3" ~ = 4a 4 A,,,/rtriD( cgp/ ~z). 

The remaining constants Bm, are obtained from the 
initial conditions. The Galerkin condition is 

I~"~f'E[C*;y,c~]yCu/2~(fl,,,y)sin(~dp)dydc~=O 

(26) 

for /x = 1 ,2 , . . .  and v = 1,2 . . . . .  and yields an oo2 
number  of homogeneous infinite algebraic equations 

in the remaining constants B~, [7]. The vanishing 
coefficient determinant of this system gives finally the 
eigenvalues/3*,. Truncating the infinite algebraic sys- 
tem by a finite m and n renders a determinant of 
finite order, which yields approximate values for the 
lower eigenvalues fl*,. It was found, that the com- 
puting effort of this method became more time con- 
suming than the numerical solution of the mass trans- 
port  equation. For  this reason the numerical 
evaluation of the above mentioned determinant,  as 
obtained by an analytical treatment of the problem 
was abandoned in favour of the pure numerical solu- 
tion. 

4. N U M E R I C A L  EVALUATION 

Some of the previous results have been evaluated 
numerically. The velocity distribution of laminar flow 
has been presented in Figs. 2(a)-(f) for various sector 
lines. The ratio 

w(r, 
/ \azJ . 

is shown for various values of c~ and coordinates r/a 
and ~b. Figure 2(a) represents the velocity of the liq- 
uid in a pipeline with the sector angle of 
15' = 27re (~ = 1/24). Since the velocity is symmetric 
to q~ = 7.5 ° it is only presented from q5 = 0 to 7.5" as 
a function of r/a. It may be noted that the velocity 
increases with the angular coordinate ~b and with the 
radius r. It reaches a maximum value close to r = a, 
of  which the maximum shifts with decreasing ~b 
towards the wall r = a. This is true in the opposite 
sense for 7.5 ° ~< q5 ~< 15 '~ = 2 ~ .  Figure 2(b) shows in 
addition the lines of equal velocity, expressing, the 
location of the larger velocities. Similar results are 
presented for ~ = 1/12, i.e. 27zc~= 30 °, c~= 1/72, 
c~ = (1/8)(2~c~ = 45 '~) in ref. [8], Figs. 2(c) and (d) 
and c~ = 1/4, i,e. a pipeline of quarter cross-section 
(27z~ = 90°). Another  case of c~ = 3/4, i.e. a pipeline 
of three-quarter cross-section ( 2 ~  = 270 °) is shown 
in Figs. 2(e) and (f). Here the velocity distribution is 
presented for the angular angles ~b = 10% 20 °, 30% 
. . . .  130 °. Figure 2(f) exhibits the lines of equal 
velocity, from which it can be noted that the maximum 
velocity api3ears in the second quadrant.  The mass 
transport for plug flow is exhibited in Figs. 3 and 
4. In Figs. 3(a)-(e) the concentration ratio 
(c-Cw)/(c~-cw) is presented along the tube, expressed 
by the coordinate (D/woa)(z/a). The results are given 
for various radii ratios b/a = k, sector angles 2ha and 
angular angles ~ for k < r/a < 1. Figure 3(a) shows 
the concentration for k = 0.1 and 2~c~ = 30 ° 
(~ = 1/12). First of all one detects that the con- 
centration decreases along the length of the tube z and 
that it exhibits larger magnitude towards the wall 
r = a. With increasing diffusion parameter D/woa it 
decreases in magnitude, i.e. increasing diffusion 
coefficient D or decreasing plug flow velocity. The 
largest concentration profile appears in the plane of 
symmetry q5 = rtc~, which is here ~b = 15 °. The con- 
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centration for the annular sector tube of  2~a = 30 ° 
and k = 0.5 is shown in ref. [8]. It may be mentioned 
that unity for the concentrat ion ratio (c-Cw)/(q-Cw) 
is shown on all figures. Similar results are given in ref. 
[8] for k = 0.1 and a = 1/6 and k = 0.5 and ct = 1/6. 
For  a quarter tube ct = 1/4, k = 0.1, 0.5 and 0.7 the 
concentrat ion ratio for plug flow, is Rresented in Figs. 
3(c)-(e). One can note, that with the increase of  sec- 
torial angle ct the concentration decay becomes much 

slower along the tube, which, of  course, is reduced 
again by changing the annular sector geometry of  the 
cross-section, i.e. by decreasing the value of  k. Figures 
4(a)-(e) show the lines of  equal concentration in the 
tube at the location (D/woa)(z/a) = 0.01 for various 
values of  a and k. With increasing k the lines of  equal 
concentration become more oval as the sector angle 
increases. 

For  laminar flow the distribution of  the con- 
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centration ratio ( c -  c w ) l ( q -  cw) is presented for vari- 
ous annular parameters k and sector angles 2he in 
Figs. 5 and 6, where Fig. 5 renders the concentration 
profiles along the pipe length and its cross-section, 
while Fig. 6 shows again the lines of equal concen- 
tration. In Figs. 5(a) (e) the concentration is given 
across the cross-section of the tube and at various 
locations Dz/ff, a 2 along the tube. Here ~ is the mean 
velocity of the liquid in the tube. The concentration 

profiles exhibit similar behaviour as in the cases of 
plug flow. It may, however, be noted that its mag- 
nitude is reduced less rapidly in laminar flow (compare 
Figs. 3 and 5). The lines of equal concentration are 
presented in Figs. 6(a)-(e) for various tube cross- 
sections (k and ~) at the location Dz/l~a 2 := 0.01, 
where the larger concentration in comparison with 
plug flow may be noticed in the 'centre' of the tube. 
It may be mentioned, that the solution based on the 
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FIG. 6. Lines of  equal concentration for laminar flow. 

analyt ica l  t r e a t m e n t  a n d  the  resul ts  o f  the  numer i ca l  
so lu t ion  o f  the  m a s s  t r a n s p o r t  e q u a t i o n  yield ident ical  
results .  
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T R A N S P O R T  DE MASSE DANS DES TUBES S E C T E U R  ET S E C T E U R  A N N U L A I R E  

R6sum6~Le  profil de vitesse et le transport  de masse pour  un 6coulement piston et laminaire de liquide 
sont  d6termin~s dans des tubes secteur ou secteur annulaire. Les concentrations ~. la paroi et fi l'entrbe du 
tube sont  suppos6es constantes. Les profils de concentration sont  d6termin6s en plusieurs points de la 
section droite et le long du tube. On  pr6sente aussi les courbes isovitesses et d'6gale concentration pour les 

cas consid6r~s. 

S T O F F f J B E R G A N G  IN SEKTOR-  U N D  R I N G S E K T O R - R O H R E N  

Zusammenfassung--Ff i r  Pfropfen- und Laminar-St r6mung von Fliissigkeit in Sektor- und Ringsektor- 
Rohren werden Geschwindigkeitsverteilung und Stoffiibergang bestimmt. Die Konzentrat ion an der Wand 
und die Anfangskonzentrat ion am Rohreinlal3 werden als konstant  angenommen.  Es werden Kon-  
zentrationsprofile ffir verschiedene Punkte des Querschnitts und in Lfingsrichtung der Rohre ermittelt. 
Zusfitzlich werden Linien gleicher Geschwindigkeit und  Konzentrat ion der Flfissigkeit ffir den Fall der 

Pfropfen- und Laminars t r6mung gezeigt. 

M A C C O H E P E H O C  B TPYBAX, PA3~E.r lEHHbIX HA CEKTOPbI ,  14 B 
C E K ~ H O H H P O B A H H b I X  KO.r lbUEBbIX TPYl ;AX 

A~oTalmR--Pacnpe/Ie-~eHHe CKOpOCTtt 14 Mac~onep¢ltoc noayqema l~1fl cTepxlteBoro H ~aMnHapUoFO 
pe)KHMOB TeqeHna )KI411KOCTH B Tpy6ax n KO.rlbUeBlalX KaHaaax, pa3geaeHubix Ha CeKTopbL KOHUeHTpa- 
un~ Ha CTeHKe n Ha~aabHaa KOHUeHTpatIH~I Ha Bxoae B Tpy6y no~ara2mcs HOCTOaHHbIMH. FIpoqbnan 
KOntleHTpatlnn onpeae~a~ncb a pa3.rlHqnblx MecTax Honepeqnoro ceqeHHSi H no ,~JIHHe xpy6bL Hpe~ac- 
TaS~eHbl rpaqbnrn paanofi CKOpOCTH XH~rOCTH a paBHO~ rontLeHTpanHn a a s  cay,~aea cTepXHesoro H 

JIaMI, IHapHoFO pe)IKHMOB TeqeHHfl. 


